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Abstract— We show how a variety of techniques from Com-
puter Graphics can be leveraged to intuitively control the
shape (configuration) of arbitrary 3D Soft Robots in VR.
Our pipeline, Virtual Reality Soft Robot Inverse Kinematics
(VR-Soft IK), overcomes fundamental limitations of general-
purpose drag-and-drop soft robot control interfaces by leaving
the 2D computer screen for 3D Virtual Reality (VR). VR-Soft
IK uses a simulation based on the Finite Element Method
(FEM) and a control method based on sensitivity analysis.
Additionally, we show that our general control pipeline can
be fused with techniques from 3D character animation to skin
our simulation with a high-resolution surface mesh, pointing
a way toward Mixed Reality Soft Robots. This full Skinned
VR-Soft IK pipeline uses skeletal animation and GPU picking.
We demonstrate the utility of our pipeline by doing real-time,
open-loop control of the real-world 3D soft robotic arm Helix.

I. INTRODUCTION

Soft robots leverage soft materials and structures, actua-
tors, and control algorithms to enable compliant interactions
with the environment [1]. This bio-inspired approach enables
interactions that can offer inherent safety around humans,
robustness to and uncertainty in the environment. These
properties are essential for robots to perform tasks in and
around human environments in roles such as healthcare,
agriculture, or home assistance. However, due to fundamental
modeling and control challenges, soft robots remain chal-
lenging to effectively control [2].

Our work starts with the observation of a fundamental
challenge facing general-purpose user interfaces for open-
loop soft robot control (inverse kinematics) [3]–[5]. Specif-
ically, soft robots move in 3D, but computer screens are
only 2D. This means quickly and accurately prescribing
3D IK targets on a 2D computer screen can be extremely
challenging. We will show that Virtual Reality (VR) is a
compelling way around this challenge, allowing users to
intuitively prescribe IK targets in 3D.

Alternative, hardware-based approaches to intuitive soft
robot posing include incorporating touchless sensors into the
robot to enable intuitive interaction modalities for teaching
and control [6]. While enabling fluent interactions, the speed
and flexibility of control are limited by the placement of
discrete sensors over the robot’s body.

1James M. Bern, William C. May, and Austin Osborn are with the
Computer Science Department at Williams College jmb15@williams.edu

2Francesco Stella, Sadra Zargarzadeh, and Josie Hughes are
with the Computational Robot Design & Fabrication Lab, EPFL.
josie.hughes@epfl.ch

3Francesco Stella is with the Department of Cognitive Robotics, Delft
University of Technology, Delft, The Netherlands.

∗These authors contributed equally.

Fig. 1. We present VR-Soft IK, an intuitive way to control the shape of an
arbitrary 3D soft robot in Virtual Reality (VR). The user is immersed in a
virtual environment, where they are presented with a finite element method
(FEM)-based simulation of a cable-driven soft robot (image inset in top
right). Using both hands, the user specifies feature points on the simulation
mesh and drags around target positions. A gradient-based optimization
routine automatically finds cable control inputs that bring the robot as close
as possible to the user-specified target. These control inputs are streamed
to the real-world robot (top left) in real-time.

Other approaches leverage kinematically-similar devices
operating in a leader-follower configuration [7], [8]. These
are elegant solutions yet require replication of hardware. Our
VR-based approach will require only a simulation.

An exciting body of work at the intersection of soft
robotics and VR has investigated applying soft robots to VR,
specifically as haptic interfaces. The most popular breed of
such soft robotic haptic interfaces is gloves [9]–[11]; how-
ever, other soft wearable VR robots have been experimented
with including exosuits [12] and necklaces [13]. We are
inspired by these works, but, in this paper, our major focus
is on applying VR to soft robotics, not vice versa.

We present an extension of the model-based, open-loop
Soft IK control method [4] to VR. Soft IK, overviewed in
Section II-B, leverages differentiable simulation and sensi-
tivity analysis to enable open-loop posing of arbitrary soft
robots [4]. Soft IK is a general method previously extended
to locomotion trajectory generation [14] and stiffness control
[15]. In this work, we extend Soft IK by bringing the soft
robot simulation into VR. Other work has also explored
bringing visualizations of soft robots into extended reality
using some of the techniques we will describe in this paper
[16]. We draw inspiration from this work and show how VR
can be pushed even further, enabling not just visualization
but also intuitive control.
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Beyond Virtual Reality, which places the user in a purely
virtual space, Mixed Reality (MR) presents the user with a
hybrid of the physical and virtual worlds. Some headsets, like
the Microsoft HoloLens [17], achieve this with a transparent
display. Others, like the Meta Quest 2, use “pass-through,”
[18] overlaying virtual content on real-world video streamed
from externally-facing cameras. Mixed Reality has exciting
applications for entertainment, allowing users to do surreal
things in the real world [19], [20]. It also has exciting
applications for robotic control, enabling users to intuitively
manipulate complex robotic systems [21]–[23]. We see great
potential for Mixed Reality to be applied to soft robotics and
will take a first step towards this vision in Section III when
we extend our VR-Soft IK pipeline with skinning.

Specifically, we contribute:

• VR-Soft IK, an extension of the Soft IK control method
to Virtual Reality using CPU raycasting.

• Skinned VR-Soft IK, a method for seamlessly incorpo-
rating a high-resolution character mesh into our pipeline
using skeletal animation and GPU picking.

• Experiments on a real-world soft robot demonstrating
the real-time use of our system.

II. METHOD: VR-SOFT IK

In this section, we describe how to implement VR-Soft
IK, a soft robot inverse kinematics for virtual reality. Our
overall system promises an ease of 3D spatial control that
far exceeds that which is possible with vanilla, 2D Soft IK.
The methods are general enough to handle any soft robot
that can be modeled in a FEM-based simulator and could
be easily extended to handle, e.g., a rod-based simulator.
The methods are general to essentially any current consumer-
grade VR headset and could be easily extended to a gesture-
based interface.

A. FEM-based Simulation

The simulation or forward kinematics (FK) problem gives
us a choice of robot control inputs and asks us to predict its
resulting position. To simulate an arbitrary cable-driven soft
robot, we discretize the robot’s volume into a tetrahedral
finite element mesh and stack the positions of each node
into a vector xrest =

[
xrest
1 ... xrest

N

]T
, which we call the

robot’s rest position or rest shape. We model the cables as
one-sided springs running frictionlessly through via points
in the mesh and stack the cable contractions (motor angle
times spool radius) into a vector u. The simulation models
a real-world cable being pulled onto a spool by decreasing
the rest length of the corresponding simulated spring.

Given a choice of control inputs u, we minimize the
total potential energy of the system E to find the resulting
statically stable shape of the robot

x(u) = argmin
x

E(x,u),

which is equivalent to solving F (x,u) = 0 for x, where F
is the total force on each node, stacked into a vector.

B. Soft IK

The inverse kinematics (IK) problem asks, given a target
position for the robot, what are optimal motor angles that
deform the robot into this target position [4]. In principle,
we could specify a target position x′ for every node in the
mesh, and minimize an objective like ∥x(u)− x′∥2, which
sums the squared distance between deformed position xi and
target position x′

i for all nodes. However, specifying an entire
target shape x′ is cumbersome. Instead, we specify target
positions p′ for one or more feature points p. There are
several ways we could go about specifying feature points.
First, we could choose a feature point to be the position of
a particular node, e.g., one near the robot’s tip [24]. More
generally, we could choose a feature point to be the weighted
sum of the positions of multiple nodes, e.g., the robot’s center
of mass [14]. In this work, we use a special kind of weighted
sum called barycentric coordinates to specify feature point
positions within, or on the surface of, the mesh’s tetrahedra.

Fig. 2. Barycentric coordinates enable us to specify a feature point within
(or on the surface of) a tetrahedron. As the tetrahedron deforms, the point
deforms along with it, as if the point were “glued in place.” Here, the
tetrahedron’s rest shape is X and its deformed shape is x. The quantities
p(X) and p(x) are the feature point’s position in the mesh’s rest shape
and deformed shape respectively.

Specifying a feature point that refers to a tetrahedron with
vertex indices ia, ib, ic, id is done by selecting barycentric
weights α, β, γ, δ that obey α + β + γ + δ = 1. A
barycentrically-specified feature point’s position is found by
the weighted sum αxia + βxib + γxic + δxid . Note that in
order for a feature point to not lie outside the tetrahedron,
it must have α, β, γ, δ ≥ 0. Since feature points refer to
deformed mesh shape, i.e., since p = p(x(u)), our “sparse”
IK objective is

OIK(u) = ∥p(x(u))− p′∥2.

We minimize this objective using gradient descent and
compute its gradient using the adjoint method. Briefly, to
compute a gradient of the form dO

du = ∂O
∂u + ∂O

∂x
dx
du , where

∂O
∂u and ∂O

∂x are easy to compute analytically but x(u) is only
known to satisfy some constraint F (x(u),u) = 0, we can
use a family of techniques colloquially known as “sensitivity
analysis.” The Jacobian dx

du is the sensitivity, telling us
how small changes in control inputs u affect changes in
the corresponding statically stable mesh position x(u). The
key observation is that differentiating the constraint yields
matrix-matrix equation dF

du = ∂F
∂u + ∂F

∂x
dx
du = 0, which

can, in principle, be solved for the Jacobian of interest
dx
du = −

(
∂F
∂x

)−1 ∂F
∂u . Computing dx

du directly in this fashion
is called “direct sensitivity analysis.”



An alternative called the “adjoint method” is often more
efficient, especially for even modestly high-dimensional u.
The adjoint method finds the vector λ = ∂O

∂x

(
∂F
∂x

)−1
by

solving matrix-vector adjoint equation ∂F
∂x

T
λT = ∂O

∂x

T
, and

uses it to evaluate the equivalent expression for the gradient
dO
du = ∂O

∂u + λT ∂O
∂u . We apply this technique, by expressing

dOIK
du = ∂OIK

∂x
dx
du , and computing ∂OIK

∂x = ∂OIK
∂p

∂p
∂x analytically.

C. VR User Interface
1) Feature Point Specification: We allow the user to

dynamically specify (“pick”) feature points p anywhere on
the simulation mesh’s surface. Each VR controller’s position
and orientation imply a ray, usually drawn as a straight line
emanating from the controller. If this ray intersects the mesh,
we draw a sphere at the intersection point as a preview to
the user of where a new feature point will be spawned if
they press the trigger button.

Here is how that works. Consider one controller’s ray, with
the equation r(t) = o+td, where t > 0. Here, o is the ray’s
origin, d is the ray’s direction, and t is the distance traveled
from the ray origin. We will cast this ray at the (triangle
mesh) surface of our simulation mesh and find its closest
intersection point. This is a typical operation in ray tracing,
which we can call a ray cast; here is a simple approach. We
perform ray-triangle intersections for all surface triangles,
one at a time on the CPU. For a triangle with vertex positions
(a, b, c), combining the ray equation with the definition of
barycentric coordinates yields the linear system{

o+ td = αa+ βb+ γc

α+ β + γ = 1,

which we solve for barycentric weights α, β, γ and ray dis-
tance t. If all these quantities are greater than zero, then we
have an intersection. We choose the closest intersection, i.e.,
the one with the smallest t, to be our new feature point.

2) Target Position Specification: When the user picks out
a new feature point on the surface of the simulation mesh,
we spawn two spheres in our VR scene, one at the feature
point and one at its target position. Initially, the two are
coincident. With either VR controller, the user can grab
onto the target position sphere and drag it around. Sphere
picking is achieved using the ray-sphere intersection routine
from [25]. While the user is grabbing the target position
sphere, we enable them to move it around either by moving
their VR controller spatially or by using the thumbstick on
the VR controller. These behaviors are implemented in, e.g.,
Unity’s XR Grab Interactable [26].

3) Other Operations: We can provide the user with sev-
eral other useful operations. First, the user can toggle the
optimization on and off. It is easier to specify feature points
when the robot is not moving. Second, we provide the user
with the ability to remove feature points, again using a ray-
sphere intersection. Finally, we can enable the user to move
pre-existing feature points around on the surface of the mesh,
by raycasting at the surface of the simulation mesh every
frame. This enables subtle adjustments without having to
remove a feature point and add a new one.

III. EXTENSION: SKINNED VR-SOFT IK
In Section II, we showed how to perform Soft IK in VR

by presenting a user with a 3D simulation of the soft robot.
However, what if we could give the user something more?
What if we could enable the user to interact with a represen-
tation of the robot that was more intuitive or more engaging
than a simple visualization of our simulation? In this section,
we take a first step towards mixed reality soft robotics and
present Skinned VR-Soft IK, which incorporates a high-
resolution surface mesh into our picking and optimization
routines. Screenshots are shown in Figure 3.

Fig. 3. Skinned VR-Soft IK incorporates a high-resolution surface mesh
(“skin”), perhaps of a friendly animated character (left) or a visually accurate
CAD model of the real-world robot (right). Note that we are not simply
overlaying the high-resolution mesh as a post-processing step. Rather, the
deformed shape of the high-resolution mesh is fully incorporated into our
picking and optimization routines, allowing the user to specify feature points
directly on the surface of the high-resolution mesh. Note, for example, the
feature point specified inside of the dragon’s mouth.

A. Mapping Between Simulation Mesh and Character Mesh
Using Skeletal Animation

First, we show how to fuse our FEM-based simulation
with a high-resolution triangle mesh, which we can think of
as the virtual robot’s “skin.” We call the deformed shape of
the skin s. We will build up a differentiable function s(x),
which deforms the skin according to the simulation.

1) Skeletal Animation Background: Skeletal animation
pipelines are used ubiquitously in animated film and games,
and enable artists to efficiently and intuitively deform triangle
(surface) meshes by using a skeleton (or “rig.”) The process
begins with the surface mesh in a bind pose. For a humanoid
character, this is typically a “T-pose,” i.e., the character
standing straight up with their arms stuck out such that the
character looks like the letter T. An artist called a “rigger”
adds a skeleton of virtual bones to the mesh, and assigns bone
weights to each of the mesh’s vertices. E.g., Vertex 7 might
be 30% of influenced by the movement of Bone 1, and 70%
influenced by the movement of Bone 2. These weights “bind”
the mesh to its skeleton. An animator can now conveniently
deform the mesh by posing its skeleton.

Mathematically, we can encode the j-th bone’s current
orientation and position into a rotation matrix Rcurr

j and trans-
lation vector tcurr

j , which we can assemble a homogeneous
transformation matrix

Bcurr
j =

[
Rcurr

j tcurr
j

0T 1

]
.



A similar transformation matrix Bbind
j can be assembled for

each bone’s bind orientation and position. The combined
transform Bj = Bcurr

j

(
Bbind

j

)−1
describes how a vertex fully

attached to the j-th bone would be transformed by that bone’s
movement. In linear blend scanning, vertices are not attached
to just one bone but rather are attached to multiple bones in a
weighted fashion, and so the i-th vertex’s deformed position
is calculated as the linear combination

si =
∑
j

Wi,jBjs
bind
i ,

where Wij is the blend weight of the i-th vertex for the j-
th bone, and sbind

i is the bind position of the i-th vertex in
homogenous coordinates. This equation can be evaluated in
parallel for all vertices using a special type of program called
a vertex shader, which runs on the GPU.

2) Adding Bones to Soft IK: Our insight is to define the
skeleton’s shape B(x(u)) in terms of the simulation mesh’s
deformed shape, again using barycentric coordinates. E.g.,
Bone 1’s origin might be at the position of Node 7, and
Bone 1’s x-axis might point from Node 7 to Node 2.

In summary, the character mesh’s deformed shape s is
driven by the skeleton’s deformed shape B, which is driven
by the simulation mesh’s deformed shape x, which is finally
driven by the control inputs u, i.e., the character mesh’s
deformed shape is a function of the form s(B(x(u))). If
we now specify feature points that refer to triangles that
are part of the skin mesh, then these feature points will
be a function of the form p(s(B(x(u)))), giving us the
differentiable Skinned VR-Soft IK objective

Oskinned
IK (u) = ∥p(s(B(x(u))))− p′∥2,

which we break down in Figure 4. In our implementation, we
compute ∂p

∂s analytically from the definition of barycentric
coordinates, estimate ∂s

∂B
∂B
∂x using finite differences, and

compute dx
du using the adjoint method as in Section II-B.

Fig. 4. Color-coded breakdown of the full Skinned VR-Soft IK objective.
The robot’s cables u (pink) deform the simulation mesh x (gray), which
deforms the bones B (red), which deform its high-resolution skin s (green),
upon which we specify barycentric feature points p (blue). Minimizing the
Skinned VR-Soft IK objective Oskinned

IK finds control inputs that drive these
feature points as close as possible to their user-specified target positions p′

(orange). The bones run through the center of the entire mesh (there are
12 total, forming a polyline “spine”), but, for visual clarity, we are drawing
only three of them above. Locations of bones are drawn approximately.

B. GPU Feature Point Specification

The final ingredient in our Skinned VR-Soft IK pipeline is
a way to interactively specify feature points on the surface
of a skinned character mesh. While it might at first seem
tempting to apply the same CPU ray-casting scheme we used
in Section II-C.1, there is a problem. Because of how we
leveraged the GPU to do skinning, we cannot easily access to
the character mesh’s deformed shape on the CPU. However,
we can actually specify feature points on the GPU using a
technique from real-time graphics [27], [28] (see Figure 5).

Fig. 5. We employ a GPU-based picking method to enable the user to
efficiently specify feature points on the surface of a high-resolution surface
mesh as it deforms. In the figure above, we are using GPU-based picking
to specify the black feature point on the dragon’s tooth. This is done by
rendering the mesh twice from the perspective of the ray, which is drawn in
magenta. The corresponding virtual camera is drawn as a gray box. In the
first render pass (top right), we draw each triangle a different color. Note
that while some are visually very similar to our eyes, each shade of red
used above is different to a computer. Note that we have used a wider field
of view here so that you can see the overall shape of the tooth hit by the
ray. The color of a pixel at the center of the render buffer corresponds to
the first triangle hit by the ray! In the second render pass (bottom right),
we render just the first triangle hit by the ray, coloring its vertices pure red,
green, and blue. Again, the color of a pixel at the center of the render buffer
is used, this time to find the barycentric coordinates of the feature point.

Here is how we do a GPU raycast. Recall that our goal is
to find the first triangle hit by ray r(t) = o+td, where o and
d are the position and orientation of a VR controller. Addi-
tionally, we would like the barycentric coordinates (α, β, γ)
of this ray-triangle intersection. To find the triangle first hit
by the ray, we render the character mesh from the perspective
of a camera with position o and negative z-axis d using a
special shader program. This shader program colors every
triangle in the mesh a different color, where a triangle’s color
encodes its unique index i, which we do with the formulaRG

B

 =

 i mod 256
⌊i/256⌋ mod 256
⌊i/2562⌋ mod 256

 /
255.0

where (R,G,B) are the color’s red, green, and blue compo-
nents respectively, which range from 0.0 to 1.0, and ⌊·⌋ is
the floor function. The trick is that a pixel at the center of
the screen is colored by first triangle hit by ray r(t). We can
retrieve that single pixel’s color as an 8-bit unsigned integer
from the GPU, and find its index with the formula

i = ⌊R/255.0⌋+ ⌊256G/255.0⌋+ ⌊2562B/255.0⌋.



To find the barycentric coordinates of intersection point p,
we can again leverage the GPU. We render only the triangle
we just found, using a special shader program. This shader
program colors the triangle’s zeroth vertex pure red, its first
vertex pure green, and its third vertex pure blue. These vertex
colors are barycentrically interpolated across the triangle, and
so by again retrieving the location of a pixel at the center
of the screen, we can read out the barycentric coordinates
(α, β, γ) = (R,G,B)/255.0.

IV. EXAMPLE: HELIX MANIPULATOR

We demonstrate VR-Soft IK on the soft robot manipulator
Helix [29], shown in Figure 6 and our Supplementary Video.
The robot is composed of a series of six trimmed helicoid
elements, forming a 0.9m long structure. The elements were
architected to optimize the robot’s workspace, robustness to
errors in control [30], and desired Cartesian stiffness [31].
The robot’s body is divided into three sections, each of which
is actuated by three cables. The top section is composed
of a single trimmed helicoid segment, and the bottom two
sections are composed of two trimmed helicoid segments
each. The gripper is a single segment attached to the end.
Bowden tubes enable independent actuation of the sections.

Fig. 6. The soft manipulator Helix has a cylindrical body, which is actuated
by nine independently motorized cables. Its body segments are printed from
thermoplastic polyurethane (TPU).

A. Evaluating Sim2Real Transfer

To characterize the accuracy of our control pipeline, we
performed the tests summarized in Figures 7 to 9. During
the experiments, the pose of the Helix robot was captured
with a Motion Capture system (OptiTrack Prime 13) and a
camera. The control inputs and pose of the simulated robot
were also recorded.

We evaluate the accuracy of the VR-Soft IK pipeline in
Figure 7, examining the resulting end-effector trajectories
for two different target trajectories. First, we tested a hard-
coded circular target trajectory for a feature point on the
robot’s tip, and second, we tested a more organic capture

of a user freely specifying targets in VR. For the circular
trajectory, the mean absolute error of the end effector’s
position in Cartesian space was 1.8% of the soft robot’s
length, with [mean, std] = [15.4mm, 31mm]; for the user-
specified trajectory, it was 2.1% of the robot’s length.

Fig. 7. Trajectory tracking performance on a hardcoded circular trajectory
(left) and on user-defined trajectories (right). In the hardcoded circular tra-
jectory (left), the tip target position followed x = [r cos(ωt), h, r sin(ωt)],
where ω being a constant velocity of 0.17 rad/s. The radius of the circle
r and the height of the trajectory h were selected so that the trajectory was
within the robot’s workspace. In the user-specified trajectory (right), the
user freely dragged the target points in the VR environment. In the reported
measurement, the soft robot was commanded to perform abrupt movements
between highly deformed poses, resulting in rapid changes in position along
the x and z axes.

In Figure 8, we show the result of solving VR-Soft IK
for various user-specified target positions p′ and compare
how the computed tendon lengths successfully translate to
the poses of the real Helix robot. During the experiment, the
view angle in the simulation was fixed to match the perspec-
tive of the camera. We observe a good qualitative match in
the overall shape of the simulated and real robot. Even when
target positions are not within the robot’s workspace, they
are still useful for enabling the user to pose the robot, and
the soft robot deforms so as to minimize the squared error
between the mesh point and the target. Because the targets
are satisfied in this “soft” sense, the user can incrementally
move the target points to precisely specify a desired shape
within the robot’s configuration space.

We are excited by the prospect of using Virtual Reality to
make it more intuitive to command robots to do real-world
tasks [32]. Our final test involves using VR-Soft IK to enable
a user to complete a real-world task using Helix. Thanks to
the match between the simulation and reality, the user is able
to intuitively use Helix to pop balloons in the real world. This
is shown in Figure 9 and in our Supplementary Video.



Fig. 8. This figure illustrates the correspondence between simulation and reality. On the top, we show the result of the control input found by VR-Soft IK
for the specified feature points in simulations. On the bottom, we show the result of sending those control inputs to the real-world soft robotic manipulator
Helix. In the leftmost two target poses, the user has specified just one feature point each, and so the optimization has a much easier time reaching them.
The three rightmost target poses use multiple, more extreme feature points. The optimization cannot satisfy them exactly, rather it finds control inputs that
drive the robot as close to them as possible.

Fig. 9. Here we show a task where the user commands the robot to pop a real-world balloon by using our VR-Soft IK interface. The balloon’s location
was measured beforehand and a sphere of similar diameter was placed at the corresponding location in the virtual environment. Our overall pipeline strikes
a balance between accuracy and efficiency, paving the way toward tasks that cross over between the virtual and physical worlds.

V. DISCUSSION AND FUTURE WORK

A. System Modularity and Rod-Based Simulators

In our implementation of the Skinned VR-Soft IK pipeline,
we modeled a soft robot as a tetrahedral finite element mesh
and skinned it using a basic skeletal rig. However, our overall
pipeline could be generalized to control robots modeled using
rods [30], [33]–[35]. To use our basic, un-skinned pipeline,
we need a way of specifying feature points on the simulation.
One way to achieve this for a rod-based simulation would be
to cast rays at the line segments making up the simulation and
take the closest point below some threshold distance. To use
our full, skinned pipeline, we need a way of deforming the
high-resolution surface mesh based on the simulation mesh.
For a rod-based simulation, the rods can do double duty as
bones in a skeletal rig.

B. Towards VR-Soft IK With Real-Time Contact

Until this point, Soft IK-type control methods have not
considered contact with the environment. This is unfortunate,
as one of the great promises of soft is their ability to safely
contact the environment. One reason for our avoidance of
contact is that state-of-the-art contact methods were either

insufficiently reliable or too computationally expensive to
be practical for real-time control applications. However,
Computer Graphics is currently experiencing a renaissance
in soft body contact simulation [36], [37]. Some of these
methods have started to make their way into Soft Robotics
[38], however, but their potential remains largely untapped.

VI. CONCLUSION

We showed how a VR-based pipeline can enable shape
control of arbitrary soft robots. We also showed how a
high-resolution skin could be fully integrated into this
pipeline, pointing the way towards Mixed Reality Soft
Robots (MRSRs). In Mixed Reality, we envision a user
intuitively specifying virtual feature points directly on the
surface of a real robot, seen through VR pass-through. The
virtual representations of the robot we have discussed in this
paper could, in a sense, “fade into the background,” and
real-world obstacles and objectives could be made visible.
Additionally, there is the potential for the user to “reach out
and touch” a mixed reality robot. We are excited about the
future of Mixed Reality Soft Robots, especially how they
may be applied to medicine and education.
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